1=2560/d^2

Simple and best practice solution for 1=2560/d^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=2560/d^2 equation:



1=2560/d^2
We move all terms to the left:
1-(2560/d^2)=0
Domain of the equation: d^2)!=0
d!=0/1
d!=0
d∈R
We get rid of parentheses
-2560/d^2+1=0
We multiply all the terms by the denominator
1*d^2-2560=0
We add all the numbers together, and all the variables
d^2-2560=0
a = 1; b = 0; c = -2560;
Δ = b2-4ac
Δ = 02-4·1·(-2560)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*1}=\frac{0-32\sqrt{10}}{2} =-\frac{32\sqrt{10}}{2} =-16\sqrt{10} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*1}=\frac{0+32\sqrt{10}}{2} =\frac{32\sqrt{10}}{2} =16\sqrt{10} $

See similar equations:

| 1/21=1/100-x+1/x | | 4x+2=30x=7 | | 1/21=1/100-x-1/x | | x+4^x=314 | | 5(x-4)-3(2x+4)/1+2x=3/7 | | ((4^x+2)-(4^3-x)=252) | | -2x=7*6-5x-1-x | | 5x-3=-2x+7 | | X+5=(x-2) | | 9(8−x)=−36 | | 8x+24=-20 | | 6x–7=32 | | 16n+5=4n+18 | | x+0.06x=361.38 | | 5z+z=-5 | | x+0.06x=371.38 | | 5z+z=5 | | (-6x)+5=3x-8 | | f=-3*(20)+8 | | x+0.06x=705.74 | | -14x=-10 | | 3x-6=108 | | 4x+16=140 | | 15+(2k)/k=5 | | 9−(x/10)=0 | | 9−x/10=0 | | (6x4)=(4-2) | | (1+3m-4m3)=0 | | 4(k)/k=-5 | | 106+52+3d=180 | | 4s+1+36+25=180 | | 4k/k=-5 |

Equations solver categories